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Forewords

Artificial Intelligence (AI) has recently gone from science fiction to an integral component of our
daily lives. Its tremendous rise can be witnessed in applications ranging from Al-driven assistants on
our smartphones to advanced robotics in manufacturing, from predictive analytics in healthcare to
sophisticated algorithms in finance.

AT’s reach has pervaded every sector as computational power and data relentlessly grow. The increasing
speed of new human-level Al algorithms has shaken the very fabric of our society.

As we stand on the edge of this new age, it’s critical to understand the vast range of Al applications
reshaping our workplace. But how can we advance in this era if we cannot understand the output of
a model? How can we trust an Al-driven system if we cannot interpret its results? Can we let an Al
system we don’t understand make decisions for us?

The terms ‘interpretation, ‘interpretability, and ‘explainability’ have thus emerged as key pillars of
Al They are not buzzwords. They bridge the gap between complex, often obscure, algorithms and
human users.

This book dives deep into these fundamental concepts that need to be demystified for beginners and
advanced specialists. Serg Masis takes the time to help the reader understand the difference between
interpretability and explainability.

The book covers practical use cases in machine learning that will provide the readers with the tools
to implement interpretable Al with efficient methods, such as SHAP and LIME. While exploring these
models, the book takes the reader into the complexity of ML models and the limitations of interpre-
table AL

The key to sustainable Al is transparency. By the end of the book, you will be able to face the challenges
of real-life AT implementations that require interpretability for legal reasons and to gain user trust.

This guide will take you to the cutting edge of real-life transparent and efficient Al implementations.

Denis Rothman

Al Ethicist and Bestselling Author



Serg is one of those authors who brings true passion to their work.

Not surprisingly, the first edition of his Interpretable Machine Learning with Python became a de facto
go-to reference for model interpretability and explainability in Python.

Today, the need for transparency in modeling is even greater than when the first edition was published.

Over the last decade, many decision-makers and researchers have increasingly realized the challenges
that come with black-box modeling.

This realization stimulated research focused on both - making predictive models more transparent
and tying modeling results to real-world processes using causal inference.

To the best of my knowledge, Serg’s new book offers the most systematic, clear, and comprehensive
coverage of explainability and interpretability methods in Python available on the market.

Even if you're a seasoned practitioner, you'll likely learn something new from this book.

Let the journey begin!

Aleksander Molak
Author of Causal Inference and Discovery in Python Creator of CausalPython.io

Sdo Paulo / Zurich, October 2023
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Preface

The title of this book suggests its central themes: interpretation, machine learning, and Python, with
the first theme being the most crucial.

So, why is interpretation so important?

Interpretable machine learning, often referred to as Explainable AI (XAI), encompasses a growing
array of techniques that help us glean insights from models, aiming to ensure they are safe, fair, and
reliable - a goal I believe we all share for our models.

With the rise of Al superseding traditional software and even human tasks, machine learning models
are viewed as a more advanced form of software. While they operate on binary data, they aren’t typical
software; their logic isn't explicitly coded by developers but emerges from data patterns. This is where
interpretation steps in, helping us understand these models, pinpoint their errors, and rectify them before
any potential mishaps. Thus, interpretation is essential in fostering trust and ethical considerations in
these models. And it’s worth noting that in the not-so-distant future, training models might move away
from coding to more intuitive drag-and-drop interfaces. In this context, understanding machine learning
models becomes an invaluable skill.

Currently, there’s still a significant amount of coding involved in data preprocessing, exploration,
model training, and deployment. And while this book is rich with Python examples, it’s not merely
a coding guide removed from practical applications or the bigger picture. The book’s essence is to
prioritize the why before the how when it comes to interpretable machine learning, as interpretation
revolves around the question of why.

Therefore, most chapters of this book kickoff by outlining a mission (the why) and then delving into
the methodology (the how). The aim is to achieve the mission using the techniques discussed in the
chapter, with an emphasis on understanding the results. The chapters wrap up by pondering on the
practical insights gained from the exercises.

The structure of this book is progressive, starting from the basics and moving to more intricate topics.
The tools utilized in this book are open source and are products of leading research institutions like
Microsoft, Google, and IBM. Even though interpretability is a vast research field with many aspects
still in the developmental phase, this book doesn’t aim to cover it all. Its primary goal is to delve
deeply into a selection of interpretability tools, making it beneficial for those working in the machine
learning domain.
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The book’s initial section introduces interpretability, emphasizing its significance in the business
landscape and discussing its core components and challenges. The subsequent section provides a
detailed overview of various interpretation techniques and their applications, whether it’s for classi-
fication, regression, tabular data, time series, images, or text. In the final section, readers will engage
in practical exercises on model tuning and data training for interpretability, focusing on simplifying
models, addressing biases, setting constraints, and ensuring dependability.

By the book’s conclusion, readers will be adept at using interpretability techniques to gain deeper
insights into machine learning models.

Who this book is for

This book caters to a diverse audience, including:

+  Data professionals who face the growing challenge of explaining the functioning of Al systems
they create and manage and seek ways to enhance them.

»  Data scientists and machine learning professionals aiming to broaden their expertise by
learning model interpretation techniques and strategies to overcome model challenges from
fairness to robustness.

+  Aspiring data scientists who have a basic grasp of machine learning and proficiency in Python.

+ Al ethics officers aiming to deepen their knowledge of the practical aspects of their role to
guide their initiatives more effectively.

« Al projectsupervisors and business leaders eager to integrate interpretable machine learning
in their operations, aligning with the values of fairness, responsibility, and transparency.

What this book covers

Chapter 1, Interpretation, Interpretability, and Explainability; and Why Does It All Matter?, introduces
machine learning interpretation and related concepts, such as interpretability, explainability, black-
box models, and transparency, providing definitions for these terms to avoid ambiguity. We then
underpin the value of machine learning interpretability for businesses.

Chapter 2, Key Concepts of Interpretability, uses a cardiovascular disease prediction example to intro-
duce two fundamental concepts (feature importance and decision regions) and the most important
taxonomies used to classify interpretation methods. We also detail what elements hinder machine
learning interpretability as a primer for what lies ahead.

Chapter 3, Interpretation Challenges, discusses the traditional methods used for machine learning
interpretation for regression and classification with a flight delay prediction problem. We will then
examine the limitations of these traditional methods and explain what makes “white-box” models
intrinsically interpretable and why we cannot always use white-box models. To answer this question,
we consider the trade-off between prediction performance and model interpretability. Finally, we will
discover some new “glass-box” models that attempt to not compromise in this trade-off.

Chapter 4, Global Model-Agnostic Interpretation Methods, explores Partial Dependence Plots (PDP) and
game-theory-inspired SHapley Additive exPlanations (SHAP) with used car pricing regression models,
then visualizes conditional marginal distribution Accumulated Local Effects (ALE) plots.
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Chapter 5, Local Model-Agnostic Interpretation Methods, covers local interpretation methods, explaining
a single or a group of predictions. To this end, the chapter covers how to leverage SHAP and Local
Interpretable Model-agnostic Explanations (LIME) for local interpretations with a chocolate bar rating
example, with both tabular and text data.

Chapter 6, Anchors and Counterfactual Explanations, continues with local model interpretations, but
only for classification problems. We use a recidivism risk prediction example to understand how we
can explain unfair predictions in a human-interpretable way. This chapter covers anchors, counter-
factuals, and the What-If-Tool (WIT).

Chapter 7, Visualizing Convolutional Neural Networks, explores interpretation methods that work with
Convolutional Neural Network (CNN) models with a garbage classifier model. Once we have grasped
how a CNN learns with activations, we will study several gradient-based attribution methods, such as
saliency maps, Grad-CAM, and integrated gradients, to debug class attribution. Lastly, we will extend
our attribution debugging know-how with perturbation-based attribution methods such as feature
ablation, occlusion sensitivity, Shapley value sampling, and KernelSHAP.

Chapter 8, Interpreting NLP Transformers, discusses how to visualize attention mechanisms in a restau-
rant review sentiment classifier transformer model, followed by interpreting integrated gradient
attributions and exploring the Learning Interpretability Tool (LIT).

Chapter 9, Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis, uses a traffic fore-
casting problem and Long Short-Term Memory (LSTM) models to show how to employ integrated
gradients and SHAP for this use case. Lastly, the chapter looks at how forecasting and uncertainty are
intrinsically linked, and sensitivity analysis - a family of methods designed to measure the uncertainty
of a model’s output in relation to its input. We study two methods: Morris for factor prioritization and
Sobol for factor fixing.

Chapter 10, Feature Selection and Engineering for Interpretability, uses a challenging non-profit direct
mailing optimization problem to review filter-based feature selection methods, such as Spearman’s
correlation and learn about embedded methods, such as Lasso. Then, you will discover wrapper
methods, such as sequential feature selection and hybrid ones, such as recursive feature elimination,
as well as more advanced ones, such as genetic algorithms. Lastly, even though feature engineering is
typically conducted before selection, there’s value in exploring feature engineering for many reasons
after the dust has settled.

Chapter 11, Bias Mitigation and Causal Inference Methods, takes a credit card default problem to demon-
strate leveraging fairness metrics and visualizations to detect undesired bias. Then, the chapter looks at
how to reduce it via preprocessing methods such as reweighting and prejudice remover for in-process-
ing and equalized odds for post-processing. Then, we test treatments for lowering credit card default
and leverage causal modeling to determine their Average Treatment Effects (ATE) and Conditional
Average Treatment Effects (CATE). Finally, we test causal assumptions and the robustness of estimates.

Chapter 12, Monotonic Constraints and Model Tuning for Interpretability, continues with the recidivism
risk prediction problem from Chapter 7. We will learn how to place guardrails with feature engineering
on the data side and monotonic and interaction constraints on the model to ensure fairness while also
learning how to tune a model when there are several objectives.
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Chapter 13, Adversarial Robustness, uses a face mask detection problem to cover an end-to-end adver-
sarial solution. An adversary can purposely thwart a model in many ways, and we focus on evasion
attacks, such as Carlini and Wagner infinity-norm and adversarial patches, and briefly explain other
forms of attack. We explain two defense methods: spatial smoothing preprocessing and adversarial
training. Lastly, we demonstrate a robustness evaluation method.

Chapter 14, What'’s Next for Machine Learning Interpretability?, summarizes what was learned in the
context of the ecosystem of machine learning interpretability methods. And then speculates on what’s
to come next!

To get the most out of this book

«  You will need a Jupyter environment with Python 3.9+. You can do either of the following:

+  Install one on your machine locally via Anaconda Navigator or from scratch with pip.

+  Use a cloud-based one, such as Google Colaboratory, Kaggle Notebooks, Azure Note-
books, or Amazon Sagemaker.

«  The instructions on how to get started will vary accordingly, so we strongly suggest that you
search online for the latest instructions for setting them up.

«  For instructions on installing the many packages employed throughout the book, please go
to the GitHub repository, which will have the updated instructions in the README . MD file. We
expect these to change over time, given how often packages change. We also tested the code
with specific versions detailed in the README .MD, so should anything fail with later versions,
please install the specific version instead.

+  Individual chapters have instructions on how to check that the right packages are installed.

+  Butdepending on the way Jupyter was set up, installing packages might be best done through
the command line or using conda, so we suggest you adapt these installation instructions to
suit your needs.

«  Ifyou are using the digital version of this book, type the code yourself or access the code via
the GitHub repository (link available in the next section). Doing so will help you avoid any
potential errors related to the copying and pasting of code.

«  If you are not a machine learning practitioner or are a beginner, it is best to read the book
sequentially since many concepts are only explained in great detail in earlier chapters. Practi-
tioners skilled in machine learning but not acquainted with interpretability can skim the first
three chapters to get the ethical context and concept definitions required to make sense of the
rest, but read the rest of the chapters in order. As for advanced practitioners with foundations
in interpretability, reading the book in any order should be fine.

«  Asforthe code, you can read the book without running the code simultaneously or strictly for
the theory. But if you plan to run the code, it is best to do it with the book as a guide to assist
with the interpretation of outcomes and strengthen your understanding of the theory.

+  While reading the book, think of ways you could use the tools learned, and by the end of it,
hopefully, you will be inspired to put this newly gained knowledge into action!
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Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/
Interpretable-Machine-Learning-with-Python-2E/. In case there’s an update to the code, it will
be updated on the existing GitHub repository. You can also find the hardware and software list of
requirements on the repository in the README . MD file.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://packt.link/gbp/9781803235424.

Conventions used

There are several text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file exten-
sions, pathnames, dummy URLs, user input, and Twitter/X handles. For example: “Next, let’s define
a device variable because if you have a CUDA-enabled GPU model, inference will perform quicker.”

A block of code is set as follows:

def predict(self, dataset):
self.model.eval()
device = torch.device("cuda" if torch.cuda.is_available()\
else "cpu")
with torch.no_grad():
loader = torch.utils.data.DatalLoader(dataset, batch_size = 32)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

def predict(self, dataset):
self.model.eval()
device = torch.device("cuda" if torch.cuda.is_available()\
else "cpu")
with torch.no_grad():
loader = torch.utils.data.DatalLoader(dataset, batch_size = 32)

Any command-line input or output is written as follows:

pip install torch


https://github.com/PacktPublishing/Interpretable-Machine-Learning-with-Python-2E/
https://github.com/PacktPublishing/Interpretable-Machine-Learning-with-Python-2E/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/gbp/9781803235424
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Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the text like this. For example: “The Predictions tab is
selected, and this tab has a Data Table to the left where you can select and pin individual data points
and a pane with Classification Results to the left.”

\/;P,> Warnings or important notes appear like this.

N

_,@: Tips and tricks appear like this.

7/

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit
http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.
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Share your thoughts

Once you've read Interpretable Machine Learning with Python 2e, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.
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Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:
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Interpretation, Interpretability,
and Explainability; and Why Does
It All Matter?

We live in a world whose rules and procedures are ever-increasingly governed by data and algorithms.

For instance, there are rules about who gets approved for credit or released on bail, and which social
media posts might get censored. There are also procedures to determine which marketing tactics are
most effective and which chest x-ray features might diagnose a positive case of pneumonia.

We expect this because it is nothing new!

But not so long ago, rules and procedures such as these used to be hardcoded into software, textbooks,
and paper forms, and humans were the ultimate decision-makers. Often, it was entirely up to human
discretion. Decisions depended on human discretion because rules and procedures were rigid and,
therefore, not always applicable. There were always exceptions, so a human was needed to make them.

For example, if you apply for a mortgage, your approval depended on an acceptable and reasonably
lengthy credit history. This data, in turn, would produce a credit score using a scoring algorithm. Then,
the bank had rules that determined what score was good enough for the mortgage you wanted. Your
loan officer could follow it or not.

These days, financial institutions train models on thousands of mortgage outcomes, with dozens of
variables. These models can be used to determine the likelihood that you would default on a mortgage
with a presumed high accuracy. If there is a loan officer to stamp the approval or denial, it’s no longer
merely a guideline but an algorithmic decision. How could it be wrong? How could it be right? How
and why was the decision made?

Hold on to that thought because, throughout this book, we will be learning the answers to these
questions and many more!
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Machine learning model interpretation enables you to understand the logic behind a decision and
trace back the detailed steps of the process behind the logic. This chapter introduces machine learning
interpretation and related concepts, such as interpretability, explainability, black-box models, and
transparency. This chapter provides definitions for these terms to avoid ambiguity and underpins the
value of machine learning interpretability. These are the main topics we are going to cover:

+  What is machine learning interpretation?

+  Understanding the difference between interpretation and explainability

«  Abusiness case for interpretability

Let’s get started!

Technical requirements

To follow the example in this chapter, you will need Python 3, either running in a Jupyter environment
or in your favorite integrated development environment (IDE) such as PyCharm, Atom, VSCode, Py-
Dev, or Idle. The example also requires the pandas, sklearn, matplotlib, and scipy Python libraries.

\/;l’{ The code for this chapter is located here: https://packt.link/Lzryo.

What is machine learning interpretation?

To interpret something is to explain the meaning of it. In the context of machine learning, that some-
thing is an algorithm. More specifically, that algorithm is a mathematical one that takes input data
and produces an output, much like with any formula.

Let’s examine the most basic of models, simple linear regression, illustrated in the following formula:
Y =Po+ Bixy

Once fitted to the data, the meaning of this model is that y predictions are a weighted sum of the
x features with the f coefficients. In this case, there’s only one x feature or predictor variable, and
the y variable is typically called the response or target variable. A simple linear regression formula
single-handedly explains the transformation, which is performed on the input data x; to produce the

output V. The following example can illustrate this concept in further detail.

Understanding a simple weight prediction model

If you go to this web page maintained by the University of California, http://wiki.stat.ucla.edu/
socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights, you can find a link to download a dataset
of 25,000 synthetic records of the weights and heights of 18-year-olds. We won’t use the entire dataset
but only the sample table on the web page itself with 200 records. We scrape the table from the web
page and fit a linear regression model to the data. The model uses the height to predict the weight.


http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights
https://packt.link/Lzryo
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In other words, x;= height and y= weight, so the formula for the linear regression model would be as

follows:
weight = [, + fiheight

You can find the code for this example here: https://github.com/PacktPublishing/Interpretable-
Machine-Learning-with-Python-2E/blob/main/01/WeightPrediction.ipynb.

To run this example, you need to install the following libraries:

. pandas to load the table into a DataFrame
. sklearn (scikit-1learn) to fit the linear regression model and calculate its error
. matplotlib to visualize the model

. scipy to test the correlation
You should load all of them first, as follows:

import math

import requests

from bs4 import BeautifulSoup

import pandas as pd

from sklearn import linear_model

from sklearn.metrics import mean_absolute_error
import matplotlib.pyplot as plt

from scipy.stats import pearsonr

Once the libraries are all loaded, you use pandas to fetch the contents of the web page, like this:

url =\
"http://wiki.stat.ucla.edu/socr/index.php/SOCR _Data Dinov_020108
HeightsWeights'

page = requests.get(url)

height_weight_df = pd.read_html(url)[1][[ 'Height(Inches)"', 'Weight(Pounds)"']]

pandas can turn the raw HyperText Markup Language (HTML) contents of the table into a Data-
Frame, which we subset to only include only two columns. And voila! We now have a DataFrame with
Heights(Inches) in one column and Weights(Pounds) in another.

Now that we have the data, we must transform it so that it conforms to the model’s specifications.
sklearn needs it as numpy arrays with (200,1) dimensions, so we must first extract the Height (Inches)
and Weight(Pounds) pandas series. Then, we turn them into (200,) numpy arrays, and, finally, reshape
them into (200,1) dimensions. The following commands perform all the necessary transformation

operations:

height_weight_df[ 'Height(Inches)"'].values.reshape(num_records, 1)
height_weight_df[ 'Weight(Pounds)"'].values.reshape(num_records, 1)

X

y
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https://github.com/PacktPublishing/Interpretable-Machine-Learning-with-Python-2E/blob/main/01/WeightPrediction.ipynb
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Then, we initialize the scikit-learn LinearRegression model and fit it with the training data, as follows:

model = linear_model.LinearRegression().fit(x,y)

To output the fitted linear regression model formula in scikit-learn, you must extract the intercept
and coefficients. This is the formula that explains how it makes predictions:

print("y =" + str(model.intercept_[0]) + " + " +\

str(model.coef .T[0][0]) + " xi")

The following is the output:

y = -106.02770644878132 + 3.432676129271629 x1

This tells us that, on average, for every additional pound, there are 3.4 inches of height.

However, explaining how the model works is only one way to explain this linear regression model, and
this is only one side of the story. The model isn’t perfect because the actual outcomes and the predicted
outcomes are not the same for the training data. The difference between them is the error or residuals.

There are many ways of understanding an error in a model. You can use an error function such as
mean_absolute_error to measure the deviation between the predicted values and the actual values,
as illustrated in the following code snippet:

y_pred = model.predict(x)
print(mean_absolute_error(y, y_pred))

A 7.8 mean absolute error means that, on average, the prediction is 7.8 pounds from the actual value,
but this might not be intuitive or informative. Visualizing the linear regression model can shed some
light on how accurate these predictions truly are.

This can be done by using a matplotlib scatterplot and overlaying the linear model (in blue) and the
mean absolute error (as two parallel bands in gray), as shown in the following code snippet:

plt.scatter(x, y, color="black")

plt.plot(x, y_pred, color='blue', linewidth=3)
plt.plot(x, y_pred + mae, color='lightgray")
plt.plot(x, y_pred - mae, color='lightgray")

If you run the preceding snippet, the plot shown here in Figure 1.1 is what you get as the output:
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Figure 1.1: Linear regression model to predict weight based on height

As you can appreciate from the plot in Figure 1.1, there are many times in which the actuals are 20-25
pounds away from the prediction. Yet the mean absolute error can fool you into thinking that the error
is always closer to 8. This is why it is essential to visualize the error of the model to understand its
distribution. Judging from this graph, we can tell that there are no red flags that stand out about this
distribution, such as residuals being more spread out for one range of heights than for others. Since
it is more or less equally spread out, we say it’s homoscedastic. In the case of linear regression, this
is one of many model assumptions you should test for, along with linearity, normality, independence,
and lack of multicollinearity (if there’s more than one feature). These assumptions ensure that you
are using the right model for the job. In other words, the height and weight can be explained with a
linear relationship, and it is a good idea to do so, statistically speaking.

With this model, we are trying to establish a linear relationship between x height and y weight. This
association is called a linear correlation. One way to measure this relationship’s strength is with Pear-
son’s correlation coefficient. This statistical method measures the association between two variables
using their covariance divided by their standard deviations. It is a number between -1 and 1 whereby
the closer the number is to 0, the weaker the association is. If the number is positive, there is a pos-
itive association, and if it’s negative, there is a negative one. In Python, you can compute Pearson’s
correlation coefficient with the pearsonr function from scipy, as illustrated here:

corr, pval = pearsonr(x[:,0], y[:,9])
print(corr)
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The following is the output:

0.5568647346122992

The number is positive, which is no surprise because as height increases, weight also tends to in-
crease, but it is also closer to 1 than to 0, denoting that it is strongly correlated. The second number
produced by the pearsonr function is the p-value for testing non-correlation. If we test that it’s less
than a threshold of 5%, we can say there’s sufficient evidence of this correlation, as illustrated here:

print(pval < 0.05)

It confirms with a True that it is statistically significant.

Understanding how a model performs under different circumstances can help us explain why it makes
certain predictions, and when it cannot. Let’s imagine we are asked to explain why someone who is 71
inches tall was predicted to have a weight of 134 pounds but instead weighed 18 pounds more. Judging
from what we know about the model, this margin of error is not unusual even though it’s not ideal.
However, there are many circumstances in which we cannot expect this model to be reliable. What
if we were asked to predict the weight of a person who is 56 inches tall with the help of this model?
Could we assure the same level of accuracy? Definitely not, because we fit the model on the data of
subjects no shorter than 63 inches. The same is true if we were asked to predict the weight of a 9-year-
old, because the training data was for 18-year-olds.

Despite the acceptable results, this weight prediction model was not a realistic example. If you want-
ed to be more accurate but—more importantly—faithful to what can really impact the weight of an
individual, you would need to add more variables. You can add—say—gender at birth, age, diet, and
activity levels. This is where it gets interesting because you have to make sure it is fair to include them,
or to exclude them. For instance, if gender were included and most of our dataset was composed of
males, how could you ensure accuracy for females? This is what is called selection bias. And what if
weight had more to do with lifestyle choices and circumstances such as poverty and pregnancy than
gender? If these variables aren’t included, this is called omitted variable bias. And then, does it make
sense to include the sensitive gender variable at the risk of adding bias to the model?

Once you have multiple features that you have vetted for bias, you can find out and explain which fea-
tures impact model performance. We call this feature importance. However, as we add more variables,
we increase the complexity of the model. Paradoxically, this is a problem for interpretation, and we
will explore this in further detail in the following chapters. For now, the key takeaway should be that
model interpretation has a lot to do with explaining the following:

«  Can we explain how predictions were made, and how the model works?
+  Can we ensure that they are reliable and safe?

. Can we explain that predictions were made without bias?
And ultimately, the question we are trying to answer is this:

Can we trust the model?
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The three main concepts of interpretable machine learning directly relate to the three preceding
questions and have the acronym of FAT, which stands for fairness, accountability, and transparency.
If you can explain that predictions were made without discernible bias, then there is fairness. If you
can explain why it makes certain predictions, then there’s accountability. And if you can explain how
predictions were made and how the model works, then there’s transparency. There are many ethical
concerns associated with these concepts, as shown here in Figure 1.2. It’s portrayed as a triangle be-
cause each layer depends on the previous one.

Fairness

Are predictions made without
discernible bias?

Equity
Justice

Diversity Inclusion

Accountability Bevacy
Can we trace lhese predictions reliably Security Safety
back to something or someone? Certainty Robustness Reliability
Transparency Explainability Interpretability
Can we explain how and
why predictions are made? Consistency Clarity Credibility

Figure 1.2: Three main concepts of interpretable machine learning

Some researchers and companies have expanded FAT under a larger umbrella of ethical A, thus turn-
ing FAT into FATE. However, both concepts very much overlap since interpretable machine learning
is how FAT principles and ethical concerns get implemented in machine learning. In this book, we
will discuss ethics in this context. For instance, Chapter 13, Adversarial Robustness, discusses reliability,
safety, and security. Chapter 11, Bias Mitigating and Causal Inference Methods, discusses fairness. That
being said, interpretable machine learning can be leveraged with no ethical aim in mind, and also
for unethical reasons too.

Understanding the difference between interpretability
and explainability

Something you've probably noticed when reading the first few pages of this book is that the verbs in-
terpret and explain, as well as the nouns interpretation and explanation, have been used interchangeably.
This is not surprising, considering that to interpret is to explain the meaning of something. Despite
that, the related terms interpretability and explainability should not be used interchangeably, even
though they are often mistaken for synonyms. Most practitioners don’t make any distinction and many
academics reverse the definitions provided in this book.
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What is interpretability?

Interpretability is the extent to which humans, including non-subject-matter experts, can understand
the cause and effect, and input and output, of a machine learning model. To say a model has a high
level of interpretability means you can describe in a human-interpretable way its inference. In oth-
er words, why does an input to a model produce a specific output? What are the requirements and
constraints of the input data? What are the confidence bounds of the predictions? Or, why does one
variable have a more substantial impact on the prediction than another? For interpretability, detailing
how a model works is only relevant to the extent that it can explain its predictions and justify that it’s
the right model for the use case.

In this chapter’s example, we could explain that there’s a linear relationship between human height
and weight, so using linear regression rather than a non-linear model makes sense. We can prove this
statistically because the variables involved don’t violate the assumptions of linear regression. Even
when statistics support your explanation, we still should consult with the domain knowledge area in-
volved in the use case. In this scenario, we rest assured, biologically speaking, because our knowledge
of human physiology doesn’t contradict the relationship between height and weight.

Beware of complexity

Many machine learning models are inherently harder to understand simply because of the math in-
volved in the inner workings of the model or the specific model architecture. In addition to this, many
choices are made that can increase complexity and make the models less interpretable, from dataset
selection to feature selection and engineering to model training and tuning choices. This complexity
makes explaining how machine learning models work a challenge. Machine learning interpretability is
avery active area of research, so there’s still much debate on its precise definition. The debate includes
whether total transparency is needed to qualify a machine learning model as sufficiently interpretable.

This book favors the understanding that the definition of interpretability shouldn’t necessarily exclude
opaque models, which, for the most part, are complex, as long as the choices made don’t compromise
their trustworthiness. This compromise is what is generally called post-hoc interpretability. After all,
much like a complex machine learning model, we can't explain exactly how a human brain makes
a choice, yet we often trust its decision because we can ask a human for their reasoning. Post-hoc
machine learning interpretation is similar, except it’s a human explaining the reasoning on behalf of
the model. Using this particular concept of interpretability is advantageous because we can interpret
opaque models and not sacrifice the accuracy of our predictions. We will discuss this in further detail
in Chapter 3, Interpretation Challenges.

When does interpretability matter?

Decision-making systems don’t always require interpretability. There are two cases that are offered
as exceptions, outlined here:

+  When incorrect results have no significant consequences. For instance, what if a machine
learning model is trained to find and read the postal code in a package, occasionally mis-
reads it, and sends it elsewhere? There’s little chance of discriminatory bias, and the cost of
misclassification is relatively low. It doesn’t occur often enough to magnify the cost beyond
acceptable thresholds.
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+  When there are consequences, but these have been studied sufficiently and validated enough
in the real world to make decisions without human involvement. This is the case with a Traf-
fic-Alert And Collision-Avoidance System (TCAS), which alerts the pilot of another aircraft
that poses a threat of a mid-air collision.

On the other hand, interpretability is needed for these systems to have the following attributes:

+  Minable for scientific knowledge: For example, meteorologists have much to learn from a
climate model, but only if it’s easy to interpret.

. Reliable and safe: The decisions made by a self-driving vehicle must be debuggable so that its
developers can understand and correct points of failure.

«  Ethical: A translation model might use gender-biased word embeddings that result in discrim-
inatory translations, such as a doctor being paired with male pronouns, but you must be able
to find these instances easily to correct them. However, the system must be designed in such
a way that you can be made aware of a problem before it is released to the public.

«  Conclusive and consistent: Sometimes, machine learning models may have incomplete and
mutually exclusive objectives—for instance, a cholesterol-control system may not consider how
likely a patient is to adhere to the diet or drug regimen, or there might be a trade-off between
one objective and another, such as safety and non-discrimination.

By explaining the decisions of a model, we can cover gaps in our understanding of the problem—its
incompleteness. One of the most significant issues is that given the high accuracy of our machine learn-
ing solutions, we tend to increase our confidence level to a point where we think we fully understand
the problem. Then, we are misled into thinking our solution covers EVERYTHING!

At the beginning of this book, we discussed how leveraging data to produce algorithmic rules is nothing
new. However, we used to second-guess these rules, and now we don’t. Therefore, a human used to be
accountable, and now it’s the algorithm. In this case, the algorithm is a machine learning model that
is accountable for all of the ethical ramifications this entails. This switch has a lot to do with accuracy.
The problem is that although a model may surpass human accuracy in aggregate, machine learning
models have yet to interpret their results as a human would. Therefore, it doesn’t second-guess its
decisions, so as a solution, it lacks a desirable level of completeness. That’s why we need to interpret
models so that we can cover at least some of that gap. So, why is machine learning interpretation not
already a standard part of the data science pipeline? In addition to our bias toward focusing on accu-
racy alone, one of the biggest impediments is the daunting concept of black-box models.

What are black-box models?

This is just another term for opaque models. A black box refers to a system in which only the input
and outputs are observable, and you cannot understand what is transforming the inputs into the
outputs. In the case of machine learning, a black-box model can be opened, but its mechanisms are
not easily understood.
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What are white-box models?

These are the opposite of black-box models (see Figure 1.3). They are also known as transparent because
they achieve total or near-total interpretation transparency. We call them intrinsically interpretable
in this book, and we cover them in more detail in Chapter 3, Interpretation Challenges.

Have a look at a comparison between the models here:

v

White Box Model Black Box Model

Has simple mechanisms Has ¢ lex mechanisms

Figure 1.3: Visual comparison between white- and black-box models

Next, we will examine the property that separates white- and black-box models: explainability.

What is explainability?

Explainability encompasses everything interpretability is. The difference is that it goes deeper on the
transparency requirement than interpretability because it demands human-friendly explanations for
amodel’s inner workings and the model training process, and not just model inference. Depending on
the application, this requirement might extend to various degrees of model, design, and algorithmic
transparency. There are three types of transparency, outlined here:

+  Model transparency: Being able to explain how a model is trained step by step. In the case
of our simple weight prediction model, we can explain how the optimization method called
ordinary least squares finds the 3 coefficient that minimizes errors in the model.

. Design transparency: Being able to explain choices made, such as model architecture and
hyperparameters. For instance, we could justify these choices based on the size or nature
of the training data. If we were performing a sales forecast and we knew that our sales were
seasonal over the year, this could be a sound parameter choice. If we had doubts, we could
always use some well-established statistical method to find seasonality patterns.

«  Algorithmic transparency: Being able to explain automated optimizations such as grid search
for hyperparameters, but note that the ones that can’t be reproduced because of their random
nature—such as random search for hyperparameter optimization, early stopping, and stochastic
gradient descent—make the algorithm non-transparent.
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Black-box models are called opaque simply because they lack model transparency, but for many mod-
els this is unavoidable, however justified the model choice might be. In many scenarios, even if you
outputted the math involved in, for example, training a neural network or a random forest, it would
raise more doubts than generate trust. There are at least a few reasons for this, outlined here:

«  Not “statistically grounded”: An opaque model training process maps an input to an optimal
output, leaving behind what appears to be an arbitrary trail of parameters. These parameters
are optimized to a cost function but are not grounded in statistical theory, which makes pre-
dictions hard to justify and explain in statistical terms.

+  Uncertainty and non-reproducibility: Many opaque models are equally reproducible because
they use random numbers to initialize their weights, regularize or optimize their hyperparam-
eters, or make use of stochastic discrimination (such is the case for random forest algorithms).

«  Overfitting and the curse of dimensionality: Many of these models operate in a high-dimen-
sional space. This doesn’t elicit trust because it’s harder to generalize on a larger number of
dimensions. After all, there’s more opportunity to overfit a model the more dimensions you add.

+  The limitations of human cognition: Transparent models are often used for smaller datasets
with fewer dimensions. They also tend to not complicate the interactions between these di-
mensions more than necessary. This lack of complexity makes it easier to visualize what the
model is doing and its outcomes. Humans are not very good at understanding many dimensions,
so using transparent models tends to make this much easier to understand. That being said,
even these models can get so complex they might become opaque. For instance, if a decision
tree model is 100 levels deep or a linear regression model has 100 features, it’s no longer easy
for us to understand.

. Occam’s razor: This is what is called the principle of simplicity or parsimony. It states that the
simplest solution is usually the right one. Whether true or not, humans also have a bias for
simplicity, and transparent models are known for—if anything—their simplicity.

Why and when does explainability matter?

Trustworthy and ethical decision-making is the main motivation for interpretability. Explainability
has additional motivations such as causality, transferability, and informativeness. Therefore, there
are many use cases in which total or nearly total transparency is valued, and rightly so. Some of these
are outlined here:

«  Scientific research: Reproducibility is essential for scientific research. Also, using statistically
grounded optimization methods is especially desirable when causality needs to be established.

+  Clinical trials: These must also produce reproducible findings and be statistically grounded.
In addition to this, given the potential of overfitting, they must use the fewest dimensions
possible and models that don’t complicate them.

. Consumer product safety testing: Much as with clinical trials, when life-and-death safety is a
concern, simplicity is preferred whenever possible.
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+  Public policy and law: This is a more nuanced discussion, as part of what legal scholars call
algorithmic governance, and they have distinguished between fishbowl transparency and rea-
soned transparency. Fishbowl transparency seeks total explainability and it’s closer to the rigor
required for consumer product safety testing, whereas reasoned transparency is one where
post-hoc interpretability, as defined earlier, would suffice. One day, the government could be
entirely run by algorithms. When that happens, it’s hard to tell which policies will align with
which form of transparency, but there are many areas of public policy, such as criminal justice,
where absolute transparency is necessary. However, whenever total transparency contradicts
privacy or security objectives, a less rigorous form of transparency may be preferred.

+  Criminal investigation and regulatory compliance audits: If something goes wrong, such as
an accident at a chemical factory caused by a robot malfunction or a crash by an autonomous
vehicle, an investigator would need a decision trail. This is to facilitate the assignment of
accountability and legal liability. Even when no accident has happened, this kind of auditing
can be performed when mandated by authorities. Compliance auditing applies to industries
that are regulated, such as financial services, utilities, transportation, and healthcare. In many
cases, fishbowl transparency is preferred.

A business case for interpretability

This section describes several practical business benefits of machine learning interpretability, such
as better decisions, as well as being more trusted, ethical, and profitable.

Better decisions

Typically, machine learning models are trained and then evaluated against the desired metrics. If they
pass quality control against a hold-out dataset, they are deployed. However, once tested in the real
world, things can get wild, as in the following hypothetical scenarios:

*  Ahigh-frequency trading algorithm could single-handedly crash the stock market.

. Hundreds of smart home devices might inexplicably burst into unprompted laughter, terri-
fying their users.

+  License-plate recognition systems could incorrectly read a new kind of license plate and fine
the wrong drivers.

+  Aracially biased surveillance system could incorrectly detect an intruder, and because of this
guards shoot an innocent office worker.

«  Aself-driving car could mistake snow for a pavement, crash into a cliff, and injure passengers.

Any system is prone to error, so this is not to say that interpretability is a cure-all. However, focusing
on just optimizing metrics can be a recipe for disaster. In the lab, the model might generalize well,
but if you don’t know why the model is making the decisions, then you can miss an opportunity for
improvement. For instance, knowing what a self-driving car identifies as a road is not enough, but
knowing why could help improve the model. If, say, one of the reasons was that road is light-colored
like the snow, this could be dangerous. Checking the model’s assumptions and conclusions can lead to
an improvement in the model by introducing winter road images into the dataset or feeding real-time
weather data into the model. Also, if this doesn’t work, maybe an algorithmic fail-safe can stop it from
acting on a decision that it’s not entirely confident about.
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One of the main reasons why a focus on machine learning interpretability leads to better decision-mak-
ing was mentioned earlier when we discussed completeness. If we think a model is complete, what
is the point of making it better? Furthermore, if we don’t question the model’s reasoning, then our
understanding of the problem must be complete. If this is the case, perhaps we shouldn’t be using
machine learning to solve the problem in the first place! Machine learning creates an algorithm that
would otherwise be too complicated to program in if-else statements, precisely to be used for cases
where our understanding of the problem is incomplete!

It turns out that when we predict or estimate something, especially with a high level of accuracy, we
think we control it. This is what is called the illusion of control bias. We can’t underestimate the com-
plexity of a problem just because, in aggregate, the model gets it right almost all the time. Even for a
human, the difference between snow and concrete pavement can be blurry and difficult to explain.
How would you even begin to describe this difference in such a way that it is always accurate? A model
can learn these differences, but it doesn’t make it any less complex. Examining a model for points of
failure and continuously being vigilant for outliers requires a different outlook, whereby we admit
that we can’t control the model, but we can try to understand it through interpretation.

The following are some additional decision biases that can adversely impact a model, and serve as
reasons why interpretability can lead to better decision-making:

+  Conservatism bias: When we get new information, we don't change our prior beliefs. With
this bias, entrenched pre-existing information trumps new information, but models ought to
evolve. Hence, an attitude that values questioning prior assumptions is a healthy one to have.

. Salience bias: Some prominent or more visible things may stand out more than others, but
statistically speaking, they should get equal attention to others. This bias could inform our
choice of features, so an interpretability mindset can expand our understanding of a problem
to include other less perceived features.

«  Fundamental attribution error: This bias causes us to attribute outcomes to behavior rather
than circumstances, character rather than situations, and nature rather than nurture. Inter-
pretability asks us to explore deeper and look for the less obvious relationships between our
variables or those that could be missing.

One crucial benefit of model interpretation is locating outliers. These outliers could be a potential new
source of revenue or a liability waiting to happen. Knowing this can help us to prepare and strategize
accordingly.

More trusted brands

Trust is defined as a belief in the reliability, ability, or credibility of something or someone. In the
context of organizations, trust is their reputation; and in the unforgiving court of public opinion, all it
takes is one accident, controversy, or fiasco to lose public confidence. This, in turn, can cause investor
confidence to wane.

Let’s consider what happened to Boeing after the 737 MAX debacle or Facebook after the Cambridge
Analytica elections scandal. In both cases, the technological failures were shrouded in mystery, leading
to massive public distrust.
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And these were examples of, for the most part, decisions made by people. With decisions made ex-
clusively by machine learning models, this could get worse because it is easy to drop the ball and
keep the accountability in the model’s corner. For instance, if you started to see offensive material
in your Facebook feed, Facebook could say it’s because its model was trained with your data such as
your comments and likes, so it’s really a reflection of what you want to see. Not their fault—your fault.
If the police targeted our neighborhood for aggressive policing because it uses PredPol, an algorithm
that predicts where and when crimes will occur, it could blame the algorithm. On the other hand, the
makers of this algorithm could blame the police because the software is trained on their police reports.
This generates a potentially troubling feedback loop, not to mention an accountability gap. And if some
pranksters or hackers physically place strange textured meshes onto a highway (see https://arxiv.
org/pdf/2101.06784.pdf), this could cause a Tesla self-driving car to veer into the wrong lane. Is this
Tesla’s fault for not anticipating this possibility, or the hackers’ for throwing a monkey wrench into their
model? This is called an adversarial attack, and we discuss this in Chapter 13, Adversarial Robustness.

Itis undoubtedly one of the goals of machine learning interpretability to make models better at making
decisions. But even when they fail, you can show that you tried. Trust is not lost entirely because of the
failure itself but because of the lack of accountability, and even in cases where it is not fair to accept
all the blame, some accountability is better than none. For instance, in the previous set of examples,
Facebook could look for clues as to why offensive material is shown more often and then commit to
finding ways to make it happen less, even if this means making less money. PredPol could find other
sources of crime-rate datasets that are potentially less biased, even if they are smaller. They could also
use techniques to mitigate bias in existing datasets (these are covered in Chapter 11, Bias Mitigation
and Causal Inference Methods). And Tesla could audit its systems for adversarial attacks, even if this
delays the shipment of its cars. All of these are interpretability solutions. Once they become common
practice, they can lead to an increase in not only public trust—be it from users and customers—but
also internal stakeholders such as employees and investors.

Many public relation AI blunders have occurred over the past couple of years. Due to trust issues, many
Al-driven technologies are losing public support, to the detriment of both companies that monetize
AT and users that could benefit from them. This, in part, requires a legal framework at a national or
global level and, at the organizational end for those that deploy these technologies, more accountability.

More ethical

There are three schools of thought for ethics: utilitarians focus on consequences, deontologists are
concerned with duty, and teleologicalists are more interested in overall moral character. So, this means
that there are different ways to examine ethical problems. For instance, there are useful lessons to
draw from all of them. There are cases in which you want to produce the greatest amount of “good,”
despite some harm being produced in the process. Other times, ethical boundaries must be treated as
lines in the sand you mustn’t cross. And at other times, it’s about developing a righteous disposition,
much like many religions aspire to do. Regardless of the school of ethics that we align with, our no-
tion of what it is evolves with time because it mirrors our current values. At this moment, in Western
cultures, these values include the following:

. Human welfare

+  Ownership and property
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. Privacy

. Freedom from bias
+  Universal usability
. Trust

+  Autonomy

«  Informed consent
«  Accountability

. Courtesy

«  Environmental sustainability

Ethical transgressions are cases whereby you cross the moral boundaries that these values seek to
uphold, be it by discriminating against someone or polluting their environment, whether it’s against
the law or not. Ethical dilemmas occur when you have a choice between options that lead to trans-
gressions, so you have to choose between one and another.

The first reason machine learning is related to ethics is that technologies and ethical dilemmas have
an intrinsically linked history.

Even the first widely adopted tools made by humans brought progress but also caused harm, such
as accidents, war, and job losses. This is not to say that technology is always bad but that we lack the
foresight to measure and control its consequences over time. In AI’s case, it is not clear what the
harmful long-term effects are. What we can anticipate is that there will be a major loss of jobs and an
immense demand for energy to power our data centers, which could put stress on the environment.
There’s speculation that Al could create an “algocratic” surveillance state run by algorithms, infringing
on values such as privacy, autonomy, and ownership. Some readers might point to examples of this
already happening.

The second reason is even more consequential than the first. It’s that predictive modeling is a techno-
logical first for humanity: machine learning is a technology that can make decisions for us, and these
decisions can produce individual ethical transgressions that are hard to trace. The problem with this is
that accountability is essential to morality because you have to know who to blame for human dignity,
atonement, closure, or criminal prosecution. However, many technologies have accountability issues
to begin with, because moral responsibility is often shared in any case. For instance, maybe the reason
for a car crash was partly due to the driver, mechanic, and car manufacturer. The same can happen
with a machine learning model, except it gets trickier. After all, a model’s programming has no pro-
grammer because the “programming” was learned from data, and there are things a model can learn
from data that can result in ethical transgressions. Top among them are biases such as the following:

. Sample bias: When your data, the sample, doesn’t represent the environment accurately, also
known as the population

+  Exclusion bias: When you omit features or groups that could otherwise explain a critical
phenomenon with the data

«  Prejudice bias: When stereotypes influence your data, either directly or indirectly

+  Measurement bias: When faulty measurements distort your data
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Interpretability comes in handy to mitigate bias, as seen in Chapter 11, Bias Mitigation and Causal In-
ference Methods, or even placing guardrails on the right features, which may be a source of bias. This
is covered in Chapter 12, Monotonic Constraints and Model Tuning for Interpretability. As explained in
this chapter, explanations go a long way in establishing accountability, which is a moral imperative.
Also, by explaining the reasoning behind models, you can find ethical issues before they cause any
harm. But there are even more ways in which models’ potentially worrisome ethical ramifications
can be controlled, and this has less to do with interpretability and more to do with design. There are
frameworks such as human-centered design, value-sensitive design, and techno-moral virtue ethics
that can be used to incorporate ethical considerations into every technological design choice. An
article by Kirsten Martin (https://doi.org/10.1007/s10551-018-3921-3) also proposes a specific
framework for algorithms. This book won’t delve into algorithm design aspects too much, but for
those readers interested in the larger umbrella of ethical Al, this article is an excellent place to start.

Organizations should take the ethics of algorithmic decision-making seriously because ethical trans-
gressions have monetary and reputation costs. But also, Al left to its own devices could undermine
the very values that sustain democracy and the economy that allows businesses to thrive.

More profitable

As seen already in this section, interpretability improves algorithmic decisions, boosting trust and
mitigating ethical transgressions.

When we leverage previously unknown opportunities and mitigate threats such as accidental failures
through better decision-making, we are likely to improve the bottom line; and if we increase trust
in an Al-powered technology, we are likely to increase its use and enhance overall brand reputation,
which also has a beneficial impact on profits. On the other hand, ethical transgressions can occur by
design or by accident, and when they are discovered, they adversely impact both profits and reputation.

When businesses incorporate interpretability into their machine learning workflows, it’s a virtuous
cycle, and it results in higher profitability. In the case of a non-profit or government, profits might
not be a motive. Still, finances are undoubtedly involved because lawsuits, lousy decision-making,
and tarnished reputations are expensive. Ultimately, technological progress is contingent not only
on the engineering and scientific skills and materials that make it possible but its voluntary adoption
by the general public.

Summary

This chapter has shown us what machine learning interpretation is and what it is not, and the impor-
tance of interpretability. In the next chapter, we will learn what can make machine learning models so
challenging to interpret, and how you would classify interpretation methods in both category and scope.

Image sources

«  Martin, K. (2019). Ethical Implications and Accountability of Algorithms. Journal of Business
Ethics 160. 835-850. https://doi.org/10.1007/s10551-018-3921-3
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This book covers many model interpretation methods. Some produce metrics, others create visuals,
and some do both; some depict models broadly and others granularly. In this chapter, we will learn
about two methods, feature importance and decision regions, as well as the taxonomies used to de-
scribe these methods. We will also detail what elements hinder machine learning interpretability as
a primer to what lies ahead.

The following are the main topics we are going to cover in this chapter:

+  Learning about interpretation method types and scopes

«  Appreciating what hinders machine learning interpretability

Let’s start with our technical requirements.

Technical requirements

Although we began the book with a “toy example,” we will be leveraging real datasets throughout this
book to be used in specific interpretation use cases. These come from many different sources and
are often used only once.

To avoid that, readers spend a lot of time downloading, loading, and preparing datasets for single
examples; there’s a library called mldatasets that takes care of most of this. Instructions on how to
install this library are located in the Preface. In addition to mldatasets, this chapter’s examples also
use the pandas, numpy, statsmodel, sklearn, seaborn, and matplotlib libraries.

\/:ﬁ{ The code for this chapter is located here: https://packt.1link/DgnVj.


https://packt.link/DgnVj
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The mission

Imagine you are an analyst for a national health ministry, and there’s a Cardiovascular Diseases (CVDs)
epidemic. The minister has made it a priority to reverse the growth and reduce the caseload to a 20-
year low. To this end, a task force has been created to find clues in the data to ascertain the following:

. What risk factors can be addressed.

«  If future cases can be predicted, interpret predictions on a case-by-case basis.

You are part of this task force!

Details about CVD

Before we dive into the data, we must gather some important details about CVD in order to do the
following:

+  Understand the problem’s context and relevance.

+  Extract domain knowledge information that can inform our data analysis and model inter-
pretation.

+  Relate an expert-informed background to a dataset’s features.

CVDs are a group of disorders, the most common of which is coronary heart disease (also known as
Ischaemic Heart Disease). According to the World Health Organization, CVD is the leading cause of death
globally, killing close to 18 million people annually. Coronary heart disease and strokes (which are, for
the most part, a byproduct of CVD) are the most significant contributors to that. It is estimated that
80% of CVD is made up of modifiable risk factors. In other words, some of the preventable factors
that cause CVD include the following:

. Poor diet

+  Smoking and alcohol consumption habits
+  Obesity

+  Lack of physical activity

«  Poor sleep

Also, many of the risk factors are non-modifiable and, therefore, known to be unavoidable, including
the following:

+  Genetic predisposition
+  Oldage

+  Male (varies with age)

We won't go into more domain-specific details about CVD because it is not required to make sense of
the example. However, it can’t be stressed enough how central domain knowledge is to model interpretation.
So, if this example was your job and many lives depended on your analysis, it would be advisable to
read the latest scientific research on the subject and consult with domain experts to inform your
interpretations.
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The approach

Logistic regression is one common way to rank risk factors in medical use cases. Unlike linear re-
gression, it doesn'’t try to predict a continuous value for each of our observations, but it predicts a
probability score that an observation belongs to a particular class. In this case, what we are trying
to predict is, given x data for each patient, what is the y probability, from 0 to 1, that they have CVD?

Preparations

We will find the code for this example here: https://github.com/PacktPublishing/Interpretable-
Machine-Learning-with-Python-2E/tree/main/02/CVD.ipynb

Loading the libraries

To run this example, we need to install the following libraries:

. mldatasets to load the dataset

. pandas and numpy to manipulate it

+  statsmodels to fit the logistic regression model
«  sklearn (scikit-learn) to split the data

. matplotlib and seaborn to visualize the interpretations
We should load all of them first:

import math

import mldatasets

import pandas as pd

import numpy as np

import statsmodels.api as sm

from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

import seaborn as sns

Understanding and preparing the data

The data to be used in this example should then be loaded into a DataFrame we call cvd_df:

cvd_df = mldatasets.load("cardiovascular-disease™)

From this, we should get 70,000 records and 12 columns. We can take a peek at what was loaded with
info():

cvd_df.info()


https://github.com/PacktPublishing/Interpretable-Machine-Learning-with-Python-2E/tree/main/02/CVD.ipynb
https://github.com/PacktPublishing/Interpretable-Machine-Learning-with-Python-2E/tree/main/02/CVD.ipynb
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The preceding command will output the names of each column with its type and how many non-null

rec

Th

ords it contains:

RangeIndex: 70000 entries, @ to 69999

Data columns (total 12 columns):

age 70000 non-null int64
gender 70000 non-null int64
height 70000 non-null int64
weight 70000 non-null float64
ap_hi 70000 non-null int64
ap_lo 70000 non-null int64
cholesterol 70000 non-null int64
gluc 70000 non-null int64
smoke 70000 non-null int64
alco 70000 non-null int64
active 70000 non-null int64
cardio 70000 non-null int64
dtypes: float64(1), int64(11)

e data dictionary

To understand what was loaded, the following is the data dictionary, as described in the source:

age: Of the patient in days (objective feature)

height: In centimeters (objective feature)

weight: In kg (objective feature)

gender: A binary where 1: female, 2: male (objective feature)

ap_hi: Systolic blood pressure, which is the arterial pressure exerted when blood is ejected
during ventricular contraction. Normal value: < 120 mmHg (objective feature)

ap_lo: Diastolic blood pressure, which is the arterial pressure in between heartbeats. Normal
value: < 80 mmHg (objective feature)

cholesterol: An ordinal where 1: normal, 2: above normal, and 3: well above normal (objec-
tive feature)

gluc: An ordinal where 1: normal, 2: above normal, and 3: well above normal (objective feature)
smoke: A binary where 0: non-smoker and 1: smoker (subjective feature)

alco: A binary where 0: non-drinker and 1: drinker (subjective feature)
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+  active: A binary where 0: non-active and 1: active (subjective feature)

«  cardio: A binary where 0: no CVD and 1: has CVD (objective and target feature)

It’s essential to understand the data generation process of a dataset, which is why the features are
split into two categories:

+  Objective: A feature that is a product of official documents or a clinical examination. It is ex-
pected to have a rather insignificant margin of error due to clerical or machine errors.

. Subjective: Reported by the patient and not verified (or unverifiable). In this case, due to lapses
of memory, differences in understanding, or dishonesty, it is expected to be less reliable than
objective features.

At the end of the day, trusting the model is often about trusting the data used to train it, so how much
patients lie about smoking can make a difference.

Data preparation

For the sake of interpretability and model performance, there are several data preparation tasks that
we can perform, but the one that stands out right now is age. Age is not something we usually mea-
sure in days. In fact, for health-related predictions like this one, we might even want to bucket them
into age groups since health differences observed between individual year-of-birth cohorts aren't as
evident as those observed between generational cohorts, especially when cross tabulating with other
features like lifestyle differences. For now, we will convert all ages into years:

cvd_df['age'] = cvd_df['age'] / 365.24

The result is a more understandable column because we expect age values to be between 0 and 120.
We took existing data and transformed it. This is an example of feature engineering, which is when
we use the domain knowledge of our data to create features that better represent our problem, thereby
improving our models. We will discuss this further in Chapter 11, Bias Mitigation and Causal Inference
Methods. There’s value in performing feature engineering simply to make model outcomes more
interpretable as long as this doesn’t significantly hurt model performance. In fact, it might improve
predictive performance. Note that there was no loss in data in the feature engineering performed on
the age column, as the decimal value for years is maintained.

Now we are going to take a peek at what the summary statistics are for each one of our features using
the describe() method:

cvd_df.describe(percentiles=[.01,.99]).transpose()
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Figure 2.1 shows the summary statistics outputted by the preceding code. It includes the 1% and 99%

percentiles, which tell us what are among the highest and lowest values for each feature:

count mean std min 1% 50% 99% max

age 70000.00 53.30 6.76 2966 3961 5395 64.31 64.92
gender 70000.00 1.35 0.48 1.00 1.00 1.00 2.00 2.00
height 70000.00 164.36 8.21 55.00 147.00 165.00 184.00 250.00
weight 70000.00 74.21 14.40 10.00 48.00 72.00 117.00 200.00
ap_hi 70000.00 128.82 154.01 -150.00 90.00 120.00 180.00 16020.00
ap_lo 70000.00 96.63 188.47 -70.00 60.00 80.00 1000.00 11000.00
cholesterol 70000.00 1.37 0.68 1.00 1.00 1.00 3.00 3.00
gluc  70000.00 1.23 0.57 1.00 1.00 1.00 3.00 3.00
smoke 70000.00 0.09 0.28 0.00 0.00 0.00 1.00 1.00
alco 70000.00 0.05 0.23 0.00 0.00 0.00 1.00 1.00
active 70000.00 0.80 0.40 0.00 0.00 1.00 1.00 1.00
cardio 70000.00 0.50 0.50 0.00 0.00 0.00 1.00 1.00

Figure 2.1: Summary statistics for the dataset

In Figure 2.1, age appears valid because it ranges between 29 and 65 years, which is not out of the
ordinary, but there are some anomalous outliers for ap_hi and ap_lo. Blood pressure can't be nega-
tive, and the highest ever recorded was 370. Keeping these outliers in there can lead to poor model
performance and interpretability. Given that the 1% and 99% percentiles still show values in normal
ranges according to Figure 2.1, there’s close to 2% of records with invalid values. If you dig deeper,
you’ll realize it’s closer to 1.8%.

incorrect_1 = cvd_df[
(cvd_df['ap_hi']>370)
| (cvd_df['ap_hi']<=40)
| (cvd_df['ap_lo'] > 370)
| (cvd_df['ap_lo'] <= 40)
].index
print(len(incorrect_1l) / cvd_df.shape[0])

There are many ways we could handle these incorrect values, but because they are relatively few re-
cords and we lack the domain expertise to guess if they were mistyped (and correct them accordingly),
we will delete them:

cvd_df.drop(incorrect_1, inplace=True)
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For good measure, we ought to make sure that ap_hi is always higher than ap_1lo, so any record with
that discrepancy should also be dropped:

cvd_df = cvd_df[cvd_df['ap_hi'] >=\
cvd_df['ap_lo']].reset_index(drop=True)

Now, in order to fit a logistic regression model, we must put all objective, examination, and subjective
features together as X and the target feature alone as y. After this, we split X and y into training and
test datasets, but make sure to include random_state for reproducibility:

y = cvd_df['cardio']
X
X_train, X_test, y_train, y_test = train_test_split(

cvd_df.drop([ ‘cardio’], axis=1).copy()

X, y, test_size=0.15, random_state=9

)

The scikit-learn train_test_split function puts 15% of the observations in the test dataset and the
remainder in the train dataset, so you end up with X and y pairs for both.

Now that we have our data ready for training, let’s train a model and interpret it.

Interpretation method types and scopes

Now that we have prepared our data and split it into training/test datasets, we can fit the model using
the training data and print a summary of the results:

log model = sm.Logit(y_train, sm.add_constant(X_train))
log_result = log_model.fit()
print(log_result.summary2())

Printing summary? on the fitted model produces the following output:

Optimization terminated successfully.

Current function value: 0.561557
Iterations 6
Results: Logit

Pseudo R-squared: 0.190
Dependent Variable: cardio AIC: 65618.3485
Date: 2020-06-10 09:10 BIC: 65726.0502
No. Observations: 58404 Log-Likelihood: -32797.
Df Model: 11 LL-Null: -40481.
Df Residuals: 58392 LLR p-value: 0.0000
Converged: 1.0000
No. Iterations:
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.2504 -44.6182 0.0000 -11.6638 -10.
.0015 34.7971 0.0000 .0482 0.
.0238 -0.9568 0.3387 .0693 0.
height 0 .0014 -2.6028 0.0092 .0063 -0.
weight 0 .0007 14.8567 0.0000 0.0096 0.
ap_hi 0 .0010 56.2824 0.0000 0.0541 0.

ap_lo o .0016 6.7670 ©0.0000 ©.0075 0.
cholesterol o .0169 29.1612 0.0000 0.4600
gluc o .0192 .0138 0.0000 .1532
smoke o .0376 .4717 ©.0005 .2043
alco

active

The preceding summary helps us to understand which X features contributed the most to the y CVD
diagnosis using the model coefficients (labeled Coef. in the table). Much like with linear regression,
the coefficients are weights applied to the predictors. However, the linear combination exponent is
a logistic function. This makes the interpretation more difficult. We explain this function further in
Chapter 3, Interpretation Challenges.

We can tell by looking at it that the features with the absolute highest values are cholesterol and
active, but it’s not very intuitive in terms of what this means. A more interpretable way of looking at
these values is revealed once we calculate the exponential of these coefficients:

np.exp(log_result.params).sort_values(ascending=False)

The preceding code outputs the following:

cholesterol .637374
ap_hi .057676
age .052357
weight .011129
ap_lo .010573
height .996389
gender .977519

gluc .890913
smoke .877576
alco .814627
active .806471
const .000014
dtype: float64
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Why the exponential? The coefficients are the log odds, which are the logarithms of the odds. Also, odds
are the probability of a positive case over the probability of a negative case, where the positive case is
the label we are trying to predict. It doesn’t necessarily indicate what is favored by anyone. For instance,
if we are trying to predict the odds of a rival team winning the championship today, the positive case
would be that they own, regardless of whether we favor them or not. Odds are often expressed as a
ratio. The news could say the probability of them winning today is 60% or say the odds are 3:2 or 3/2
=1.5. In log odds form, this would be 0.176, which is the logarithm of 1.5. They are basically the same
thing but expressed differently. An exponential function is the inverse of a logarithm, so it can take
any log odds and return the odds, as we have done.

Back to our CVD case. Now that we have the odds, we can interpret what it means. For example, what
do the odds mean in the case of cholesterol? It means that the odds of CVD increase by a factor of
1.64 for each additional unit of cholesterol, provided every other feature stays unchanged. Being able
to explain the impact of a feature on the model in such tangible terms is one of the advantages of an
intrinsically interpretable model such as logistic regression.

Although the odds provide us with useful information, they don’t tell us what matters the most and,
therefore, by themselves, cannot be used to measure feature importance. But how could that be? If
something has higher odds, then it must matter more, right? Well, for starters, they all have different
scales, so that makes a huge difference. This is because if we measure the odds of how much some-
thing increases, we have to know by how much it typically increases because that provides context.
For example, we could say that the odds of a specific species of butterfly living one day more are 0.66
after their first eggs hatch. This statement is meaningless unless we know the lifespan and reproduc-
tive cycle of this species.

To provide context to our odds, we can easily calculate the standard deviation of our features using
the np.std function:

np.std(X_train, 0)

The following series is what is outputted by the np.std function:

age 6.757537
gender 0.476697
height 8.186987
weight .335173
ap_hi .703572
ap_lo .547583

cholesterol .678878
gluc .571231
smoke .283629
alco .225483
active .397215
dtype: float64
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As we can tell by the output, binary and ordinal features only typically vary by one at most, but con-
tinuous features, such as weight or ap_hi, can vary 10-20 times more, as evidenced by the standard
deviation of the features.

Another reason why odds cannot be used to measure feature importance is that despite favorable odds,
sometimes features are not statistically significant. They are entangled with other features in such
a way they might appear to be significant, but we can prove that they aren’t. This can be seen in the
summary table for the model, under the P>| z| column. This value is called the p-value, and when it’s
less than 0.05, we reject the null hypothesis that states that the coefficient is equal to zero. In other
words, the corresponding feature is statistically significant. However, when it’s above this number,
especially by a large margin, there’s no statistical evidence that it affects the predicted score. Such is
the case with gender, at least in this dataset.

If we are trying to obtain what features matter most, one way to approximate this is to multiply the
coefficients by the standard deviations of the features. Incorporating the standard deviations accounts
for differences in variances between features. Hence, it is better if we get gender out of the way too
while we are at it:

coefs = log_result.params.drop(labels=['const"', "'gender'])
stdv = np.std(X_train, 0).drop(labels="'gender")
abs(coefs * stdv).sort_values(ascending=False)

The preceding code produced this output:

ap_hi 0.936632
.344855
.334750
.158651
.100419
.085436
.065982
.046230
.037040
.029620

age
cholesterol
weight
ap_lo
active

gluc

alco

smoke
height

0
(<]
0
(<]
0
(<]
0
(<]
0

The preceding table can be interpreted as an approximation of risk factors from high to low according
to the model. It is also a model-specific feature importance method, in other words, a global model
(modular) interpretation method. There are a lot of new concepts to unpack here, so let’s break them
down.

Model interpretability method types
There are two model interpretability method types:
«  Model-specific: When the method can only be used for a specific model class, then it’s mod-

el-specific. The method detailed in the previous example can only work with logistic regression
because it uses its coefficients.
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+  Model-agnostic: These are methods that can work with any model class. We cover these in
Chapter 4, Global Model-Agnostic Interpretation Methods, and the next two chapters.

Model interpretability scopes

There are several model interpretability scopes:

«  Global holistic interpretation: We can explain how a model makes predictions simply be-
cause we can comprehend the entire model at once with a complete understanding of the
data, and it’s a trained model. For instance, the simple linear regression example in Chapter 1,
Interpretation, Interpretability, and Explainability; and Why Does It All Matter?, can be visualized
in a two-dimensional graph. We can conceptualize this in memory, but this is only possible
because the simplicity of the model allows us to do so, and it’s not very common nor expected.

+  Global modular interpretation: In the same way that we can explain the role of parts of an
internal combustion engine in the whole process of turning fuel into movement, we can also
do so with a model. For instance, in the CVD risk factor example, our feature importance
method tells us that ap_hi (systolic blood pressure), age, cholesterol, and weight are the
parts that impact the whole the most. Feature importance is only one of many global modular
interpretation methods but arguably the most important one. Chapter 4, Global Model-Agnostic
Interpretation Methods, goes into more detail on feature importance.

. Local single-prediction interpretation: We can explain why a single prediction was made.
The next example will illustrate this concept and Chapter 5, Local Model-Agnostic Interpretation
Methods, will go into more detail.

«  Local group-prediction interpretation: The same as single-prediction, except that it applies
to groups of predictions.

Congratulations! You've already determined the risk factors with a global model interpretation meth-
od, but the health minister also wants to know whether the model can be used to interpret individual
cases. So, let’s look into that.

Interpreting individual predictions with logistic regression
What if we used the model to predict CVD for the entire test dataset? We could do so like this:

y_pred = log result.predict(sm.add_constant(X_test)).to_numpy()
print(y_pred)

The resulting array is the probabilities that each test case is positive for CVD:

[0.40629892 0.17003609 0.13405939 ... 0.95575283 0.94095239 0.91455717]

Let’s take one of the positive cases; test case #2872:

print(y_pred[2872])

We know that it predicted positive for CVD because the score exceeds 0.5.
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And these are the details for test case #2872:

print(X_test.iloc[2872])

The following is the output:

age .521849
gender .000000
height . 000000
weight .000000
ap_hi .000000
ap_lo .000000

cholesterol .000000
gluc .000000
smoke .000000
alco .000000
active .000000
Name: 46965, dtype: floaté64

So, by the looks of the preceding series, we know that the following applies to this individual:

«  Aborderline high ap_hi (systolic blood pressure) since anything above or equal to 130 is con-
sidered high according to the American Heart Association (AHA).

. Normal ap_1lo (diastolic blood pressure) also according to AHA. Having high systolic blood
pressure and normal diastolic blood pressure is what is known as isolated systolic hypertension.
It could be causing a positive prediction, but ap_hi is borderline; therefore, the condition of
isolated systolic hypertension is borderline.

«  ageisnottoo old, but among the oldest in the dataset.
. cholesterol is normal.

. weight also appears to be in the healthy range.

There are also no other risk factors: glucose is normal, the individual does not smoke nor drink alcohol,
and does not live a sedentary lifestyle, as the individual is active. It is not clear exactly why it’s positive.
Are the age and borderline isolated systolic hypertension enough to tip the scales? It’s tough to understand
the reasons for the prediction without putting all the predictions into context, so let’s try to do that!

But how do we put everything in context at the same time? We can’t possibly visualize how one pre-
diction compares with the other 10,000 for every single feature and their respective predicted CVD
diagnosis. Unfortunately, humans can’t process that level of dimensionality, even if it were possible
to visualize a ten-dimensional hyperplane!

However, we can do it for two features at a time, resulting in a graph that conveys where the decision
boundary for the model lies for those features. On top of that, we can overlay what the predictions
were for the test dataset based on all the features. This is to visualize the discrepancy between the
effect of two features and all eleven features.
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This graphical interpretation method is what is termed a decision boundary. It draws boundaries for
the classes, leaving areas that belong to one class or another. Such areas are called decision regions.
In this case, we have two classes, so we will see a graph with a single boundary between cardio=0 and
cardio=1, only concerning the two features we are comparing.

We have managed to visualize the two decision-based features at a time, with one big assumption that
if all the other features are held constant, we can observe only two in isolation. This is also known
as the ceteris paribus assumption and is critical in a scientific inquiry, allowing us to control some
variables in order to observe others. One way to do this is to fill them with a value that won't affect
the outcome. Using the table of odds we produced, we can tell whether a feature increases as it will
increase the odds of CVD. So, in aggregates, a lower value is less risky for CVD.

For instance, age=30 is the least risky value of those present in the dataset for age. It can also go in
the opposite direction, so active=1 is known to be less risky than active=0. We can come up with
optimal values for the remainder of the features:

. height=165.

. weight=57 (optimal for that height).
. ap_hi=110.

. ap_lo=70.

. smoke=0.

. cholesterol=1 (this means normal).

+  gender can be coded for male or female, which doesn’t matter because the odds for gender
(0.977519) are so close to 1.

The following filler_feature_values dictionary exemplifies what should be done with the features
matching their index to their least risky values:

filler_feature_values = {
"age": 30,
"gender": 1,
"height": 165,
"weight": 57,

"ap_hi": 11e,
"ap_lo": 70,
"cholesterol": 1,
"gluc": 1,
"smoke": 9,
"alco":0,
"active":1
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The next thing to do is to create a (1,12) shaped NumPy array with test case #2872 so that the plotting
function can highlight it. To this end, we first convert it into NumPy and then prepend the constant
of 1, which must be the first feature, and then reshape it so that it meets the (1,12) dimensions. The
reason for the constantis thatin statsmodels, we must explicitly define the intercept. For this reason,
the logistic model has an additional @ feature, which always equals 1.

X_highlight = np.reshape(
np.concatenate(([1], X_test.iloc[2872].to_numpy())), (1, 12))
print(X_highlight)

The following is the output:

60.52184865

1.

We are good to go now! Let’s visualize some decision region plots! We will compare the feature that is
thought to be the highest risk factor, ap_hi, with the following four most important risk factors: age,
cholesterol, weight, and ap_lo.

The following code will generate the plots in Figure 2.2:

plt.rcParams.update({ 'font.size': 14})
fig, axarr = plt.subplots(2, 2, figsize=(12,8), sharex=True,
sharey=False)
mldatasets.create_decision_plot(
X_test,
y_test,
log_result,
["ap_hi", "age"],
None,
X_highlight,
filler_feature_values,
ax=axarr.flat[o]
)
mldatasets.create_decision_plot(
X_test,
y_test,
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log_result,

["ap_hi", "cholesterol"],
None,

X_highlight,

filler_feature_values,
ax=axarr.flat[1]

)
mldatasets.create_decision_plot(
X_test,
y_test,
log_result,
["ap_hi", "ap_lo0"],
None,
X_highlight,
filler_feature_values,
ax=axarr.flat[2],
)
mldatasets.create_decision_plot(
X_test,
y_test,
log_result,
["ap_hi", "weight"],
None,
X_highlight,
filler_feature_values,
ax=axarr.flat[3],
)
plt.subplots_adjust(top=1, bottom=0, hspace=0.2, wspace=0.2)
plt.show()

In the plot in Figure 2.2, the circle represents test case #2872. In all the plots bar one, this test case is
on the negative (left-hand side) decision region, representing cardio=e classification. The borderline
high ap_hi (systolic blood pressure) and the relatively high age are barely enough for a positive pre-
diction in the top-left chart. Still, in any case, for test case #2872, we have predicted a 57% score for
CVD, so this could very well explain most of it.
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Not surprisingly, by themselves, ap_hi and a healthy cholesterol value are not enough to tip the scales
in favor of a definitive CVD diagnosis according to the model because it’s decidedly in the negative
decision region, and neither is a normal ap_lo (diastolic blood pressure). You can tell from these
three charts that although there’s some overlap in the distribution of squares and triangles, there is a
tendency for more triangles to gravitate toward the positive side as the y-axis increases, while fewer
squares populate this region:
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Figure 2.2: The decision regions for ap_hi and other top risk factors, with test case #2872

The overlap across the decision boundary is expected because, after all, these squares and triangles
are based on the effects of all features. Still, you expect to find a somewhat consistent pattern. The
chart with ap_hi versus weight doesn’t have this pattern vertically as weight increases, which sug-
gests something is missing in this story... Hold that thought because we are going to investigate that
in the next section!
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Congratulations! You have completed the second part of the minister’s request.

Decision region plotting, a local model interpretation method, provided the health ministry with a
tool to interpret individual case predictions. You could now extend this to explain several cases at a
time, or plot all-important feature combinations to find the ones where the circle is decidedly in the
positive decision region. You can also change some of the filler variables one at a time to see how they
make a difference. For instance, what if you increase the filler age to the median age of 54 or even to
the age of test case #2872? Would a borderline high ap_hi and healthy cholesterol now be enough to
tip the scales? We will answer this question later, but first, let’s understand what can make machine
learning interpretation so difficult.

Appreciating what hinders machine learning
interpretability

In the last section, we were wondering why the chart with ap_hi versus weight didn’t have a conclusive
pattern. It could very well be that although weight is a risk factor, there are other critical mediating
variables that could explain the increased risk of CVD. A mediating variable is one that influences
the strength between the independent and target (dependent) variable. We probably don’t have to
think too hard to find what is missing. In Chapter 1, Interpretation, Interpretability, and Explainability;
and Why Does It All Matter?, we performed linear regression on weight and height because there’s a
linear relationship between these variables. In the context of human health, weight is not nearly as
meaningful without height, so you need to look at both.

Perhaps if we plot the decision regions for these two variables, we will get some clues. We can plot
them with the following code:

fig, ax = plt.subplots(1,1, figsize=(12,8))
mldatasets.create_decision_plot(
X_test,
y_test,
log_result,
[3, 4],
['height [cm]',
‘weight [kg]'],
X_highlight,
filler_feature_values,
filler_feature_ranges,
ax=ax
)
plt.show()
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The preceding snippet will generate the plot in Figure 2.3:
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Figure 2.3: The decision regions for weight and height, with test case #2872

No decision boundary was ascertained in Figure 2.3 because if all other variables are held constant
(at a less risky value), no height and weight combination is enough to predict CVD. However, we can
tell that there is a pattern for the orange triangles, mostly located in one ovular area. This provides
exciting insight that even though we expect weight to increase when height increases, the concept
of an inherently unhealthy weight value is not one that increases linearly with height.

In fact, for almost two centuries, this relationship has been mathematically understood by the name
body mass index (BMI):

weight,,

BMI =
height2,

Before we discuss BMI further, you must consider complexity. Dimensionality aside, there are chiefly
three things that introduce complexity that makes interpretation difficult:

1. Non-linearity

2. Interactivity

3. Non-monotonicity
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Non-linearity

Linear equationssuchasy = a + bx + ¢z are easy to understand. They are additive, so it is easy
to separate and quantify the effects of each of its terms (a, bx, and cz) from the outcome of the model
(¥). Many model classes have linear equations incorporated in the math. These equations can both
be used to fit the data to the model and describe the model.

However, there are model classes that are inherently non-linear because they introduce non-linearity
in their training. Such is the case for deep learning models because they have non-linear activation
functions such as sigmoid. However, logistic regression is considered a Generalized Linear Model
(GLM) because it’s additive. In other words, the outcome is a sum of weighted inputs and parameters.
We will discuss GLMs further in Chapter 3, Interpretation Challenges.

However, even if your model is linear, the relationships between the variables may not be linear, which
can lead to poor performance and interpretability. What you can do in these cases is adopt either of
the following approaches:

«  Use a non-linear model class, which will fit these non-linear feature relationships much better,
possibly improving model performance. Nevertheless, as we will explore in more detail in the
next chapter, this can make the model less interpretable.

. Use domain knowledge to engineer a feature that can help “linearize” it. For instance, if you had a
feature that increased exponentially against another, you can engineer a new variable with the
logarithm of that feature. In the case of our CVD prediction, we know BMI is a better way to
understand weight in the company of height. Best of all, it’s not an arbitrary made-up feature,
soit’s easier to interpret. We can prove this point by making a copy of the dataset, engineering
the BMI feature in it, training the model with this extra feature, and performing local model
interpretation. The following code snippet does just that:

X2 = cvd_df.drop([ 'cardio’], axis=1).copy()
X2["bmi"] = X2["weight"] / (X2["height"]/100)**2

To illustrate this new feature, let’s plot bmi against both weight and height using the following code:

fig, (ax1, ax2, ax3) = plt.subplots(1,3, figsize=(15,4))
sns.regplot(x="weight", y="bmi", data=X2, ax=ax1)
sns.regplot(x="height", y="bmi", data=X2, ax=ax2)
sns.regplot(x="height", y="weight", data=X2, ax=ax3)
plt.subplots_adjust(top = 1, bottom=0, hspace=0.2, wspace=0.3)
plt.show()



38 Key Concepts of Interpretability

Figure 2.4 is produced with the preceding code:
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Figure 2.4: Bivariate comparison between weight, height, and bmi

As you can appreciate by the plots in Figure 2.4, there is a more definite linear relationship between
bmi and weight than between height and weight and, even, between bmi and height.

Let’s fit the new model with the extra feature using the following code snippet:

X2 = X2.drop(['weight', 'height'], axis=1)
X2_train, X2 _test, , = train_test split(
X2, y, test_size=0.15, random_state=9)
log model2 = sm.Logit(y_train, sm.add_constant(X2_train))
log_result2 = log_model2.fit()

Now, let’s see whether test case #2872 is in the positive decision region when comparing ap_hi to bmi
if we keep age constant at 60:

filler_feature_values2 = {
"age": 60, "gender": 1, "ap_hi": 11e,
"ap_lo": 70, "cholesterol": 1, "gluc": 1,
"smoke": @, "alco":0, "active":1, "bmi":20

X2_highlight = np.reshape(
np.concatenate(([1],X2_test.iloc[2872].to_numpy())), (1, 11)

)
fig, ax = plt.subplots(1,1, figsize=(12,8))

mldatasets.create_decision_plot(
X2_test, y_test, log result2,
["ap_hi", "bmi"], None, X2_highlight,
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filler_feature_values2, ax=ax)
plt.show()

The preceding code plots decision regions in Figure 2.5:
H

B 0
250- \
200-

150-

bmi

100-

50-

25 200 225

Figure 2.5: The decision regions for ap_hi and bmi, with test case #2872

Figure 2.5 shows that controlling for age, ap_hi, and bmi can help explain the positive prediction
for CVD because the circle is in the positive decision region. Please note that there are some likely
anomalous bmi outliers (the highest BMI ever recorded was 204), so there are probably some incorrect
weights or heights in the dataset.

WHAT’S THE PROBLEM WITH OUTLIERS?

Outliers can be influential or high leverage and, therefore, affect the model when trained
with these included. Even if they don't, they can make interpretation more difficult. If
they are anomalous, then you should remove them, as we did with blood pressure at the
beginning of this chapter. And sometimes, they can hide in plain sight because they are
only perceived as anomalous in the context of other features. In any case, there are prac-
\G/\/ tical reasons why outliers are problematic, such as making plots like the preceding one
“zoom out” to be able to fit them while not letting you appreciate the decision boundary
where it matters. And there are also more profound reasons, such as losing trust in the
data, thereby tainting trust in the models that were trained on that data, or making the
model perform worse. This sort of problem is to be expected with real-world data. Even
though we haven't done it in this chapter for the sake of expediency, it’s essential to begin
every project by thoroughly exploring the data, treating missing values and outliers, and
doing other data housekeeping tasks.
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Interactivity

When we created bmi, we didn’t only linearize a non-linear relationship, but we also created inter-
actions between two features. bmi is, therefore, an interaction feature, but this was informed by
domain knowledge. However, many model classes do this automatically by permutating all kinds of
operations between features. After all, features have latent relationships between one another, much
like height and width, and ap_hi and ap_1lo. Therefore, automating the process of looking for them
is not always a bad thing. In fact, it can even be absolutely necessary. This is the case for many deep
learning problems where the data is unstructured and, therefore, part of the task of training the model
is looking for the latent relationships to make sense of it.

However, for structured data, even though interactions can be significant for model performance, they
can hurt interpretability by adding potentially unnecessary complexity to the model and also finding
latent relationships that don’t mean anything (which is called a spurious relationship or correlation).

Non-monotonicity

Often, a variable has a meaningful and consistent relationship between a feature and the target vari-
able. So, we know that as age increases, the risk of CVD (cardio) must increase. There is no point at
which you reach a certain age and this risk drops. Maybe the risk slows down, but it does not drop. We
call this monotonicity, and functions that are monotonic are either always increasing or decreasing
throughout their entire domain.

Please note that all linear relationships are monotonic, but not all monotonic relationships are nec-
essarily linear. This is because they don't have to be a straight line. A common problem in machine
learning is that a model doesn’t know about a monotonic relationship that we expect because of our
domain expertise. Then, because of noise and omissions in the data, the model is trained in such a
way in which there are ups and downs where you don't expect them.

Let’s propose a hypothetical example. Let’s imagine that due to a lack of availability of data for
57-60-year-olds, and because the few cases we did have for this range were negative for CVD, the model
could learn that this is where you would expect a drop in CVD risk. Some model classes are inherently
monotonic, such as logistic regression, so they can’t have this problem, but many others do. We will
examine this in more detail in Chapter 12, Monotonic Constraints and Model Tuning for Interpretability:
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Figure 2.6: A partial dependence plot between a target variable (yhat) and a predictor with monotonic
and non-monotonic models

Figure 2.6 is what is called a Partial Dependence Plot (PDP), from an unrelated example. PDPs are a
concept we will study in further detail in Chapter 4, Global Model-Agnostic Interpretation Methods, but
what is important to grasp from it is that the prediction yhat is supposed to decrease as the feature
quantity_indexes_for_real_gdp_by_stateincreases. Asyou can tell by the lines, in the monotonic
model, it consistently decreases, but in the non-monotonic one, it has jagged peaks as it decreases,
and then increases at the very end.
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Mission accomplished

The first part of the mission was to understand risk factors for cardiovascular disease, and you've
determined that the top four risk factors are systolic blood pressure (ap_hi), age, cholesterol, and
weight according to the logistic regression model, of which only age is non-modifiable. However, you
also realized that systolic blood pressure (ap_hi) is not as meaningful on its own since it relies on
diastolic blood pressure (ap_1lo) for interpretation. The same goes for weight and height. We learned
that the interaction of features plays a crucial role in interpretation, and so does their relationship
with each other and the target variable, whether linear or monotonic. Furthermore, the data is only
a representation of the truth, which can be wrong. After all, we found anomalies that, left unchecked,
can bias our model.

Another source of bias is how the data was collected. After all, you can wonder why the model’s top
features were all objective and examination features. Why isn’t smoking or drinking a larger factor?
To verify whether there was sample bias involved, you would have to compare with other more trust-
worthy datasets to check whether your dataset is underrepresenting drinkers and smokers. Or maybe
the bias was introduced by the question that asked whether they smoked now, and not whether they
had ever smoked for an extended period.

Another type of bias that we could address is exclusion bias—our data might be missing information
that explains the truth that the model is trying to depict. For instance, we know through medical re-
search that blood pressure issues such as isolated systolic hypertension, which increases CVD risk, are
caused by underlying conditions such as diabetes, hyperthyroidism, arterial stiffness, and obesity, to
name a few. The only one of these conditions that we can derive from the data is obesity and not the
other ones. If we want to be able to interpret a model’s predictions well, we need to have all relevant
features. Otherwise, there will be gaps we cannot explain. Maybe once we add them, they won’t make
much of a difference, but that’s what the methods we will learn in Chapter 10, Feature Selection and
Engineering for Interpretability, are for.

The second part of the mission was to be able to interpret individual model predictions. We can do this
well enough by plotting decision regions. It’s a simple method, but it has many limitations, especially
in situations where there are more than a handful of features, and they tend to interact a lot with each
other. Chapter 5, Local Model-Agnostic Interpretation Methods, and Chapter 6, Anchors and Counterfactual
Explanations, will cover local interpretation methods in more detail. However, the decision region
plot method helps illustrate many of the concepts surrounding decision boundaries, which we will
discuss in those chapters.

Summary

In this chapter, we covered two model interpretation methods: feature importance and decision
boundaries. We also learned about model interpretation method types and scopes and the three ele-
ments that impact interpretability in machine learning. We will keep mentioning these fundamental
concepts in subsequent chapters. For a machine learning practitioner, it is paramount to be able to
spot them so that we can know what tools to leverage to overcome interpretation challenges. In the
next chapter, we will dive deeper into this topic.
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Further reading

*  Molnar, Christoph. Interpretable Machine Learning. A Guide for Making Black Box Models Explain-
able. 2019: https://christophm.github.io/interpretable-ml-book/

. Mlextend Documentation. Plotting Decision Regions: http://rasbt.github.io/mlxtend/user_
guide/plotting/plot_decision_regions/

Learn more on Discord

To join the Discord community for this book - where you can share feedback, ask the author questions,
and learn about new releases - follow the QR code below:

https://packt.link/inml



https://christophm.github.io/interpretable-ml-book/
http://rasbt.github.io/mlxtend/user_guide/plotting/plot_decision_regions/
http://rasbt.github.io/mlxtend/user_guide/plotting/plot_decision_regions/




Interpretation Challenges

In this chapter, we will discuss the traditional methods used for machine learning interpretation for
both regression and classification. This includes model performance evaluation methods such as RMSE,
R-squared, AUC, ROC curves, and the many metrics derived from confusion matrices. We will then

examine the limitations of these performance metrics and explain what exactly makes “white-box”
models intrinsically interpretable and why we cannot always use white-box models. To answer these

questions, we’ll consider the trade-off between prediction performance and model interpretability.
Finally, we will discover some new “glass-box” models such as Explainable Boosting Machines (EBMs)

and GAMI-Net that attempt to not compromise on this trade-off between predictive performance and

interpretability.

The following are the main topics that will be covered in this chapter:

. Reviewing traditional model interpretation methods

+  Understanding the limitations of traditional model interpretation methods
. Studying intrinsically interpretable (white-box) models

+  Recognizing the trade-off between performance and interpretability

«  Discovering newer interpretable (glass-box) models

Technical requirements

From Chapter 2, Key Concepts of Interpretability, onward, we are using a custom mldatasets library to
load our datasets. Instructions on how to install this library can be found in the Preface. In addition
to mldatasets, this chapter’s examples also use the pandas, numpy, sklearn, rulefit, interpret,
statsmodels, matplotlib, and gaminet libraries.

\/;ﬂ{ The code for this chapter is located here: packt.1link/swCyB.


http://packt.link/swCyB
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The mission

Picture yourself, a data science consultant, in a conference room in Fort Worth, Texas, during early
January 2019. In this conference room, executives for one of the world’s largest airlines, American
Airlines (AA), are briefing you on their On-Time Performance (OTP). OTP is a widely accepted Key
Performance Indicator (KPI) for flight punctuality. It is measured as the percentage of flights that ar-
rived within 15 minutes of the scheduled arrival. It turns out that AA has achieved an OTP of just over
80% for 3 years in a row, which is acceptable, and a significant improvement, but they are still ninth
in the world and fifth in North America. To brag about it next year in their advertising, they aspire to
achieve, at least, number one in North America for 2019, besting their biggest rivals.

On the financial front, it is estimated that delays cost the airline close to $2 billion, so reducing this
by 25-35% to be on parity with their competitors could produce sizable savings. And it is estimated
that it costs passengers just as much due to tens of millions of lost hours. A reduction in delays would
result in happier customers, which could lead to an increase in ticket sales.

Your task is to create models that can accurately predict delays for domestic flights only. What they
hope to gain from the models is the following:

+  Tounderstand what factors impacted domestic arrival delays the most in 2018

«  To anticipate a delay caused by the airline in midair with enough accuracy to mitigate some
of these factors in 2019

But not all delays are made equal. The International Air Transport Association (IATA) has over 80
delay codes ranging from 14 (oversales booking errors) to 75 (de-icing of aircraft, removal of ice/snow, frost
prevention). Some are preventable, and others unavoidable.

The airline executives told you that the airline is not, for now, interested in predicting delays caused
by events out of their control, such as extreme weather, security events, and air traffic control issues.
They are also not interested in delays caused by late arrivals from previous flights using the same
aircraft because this was not the root cause. Nevertheless, they would like to know the effect of a
busy hub on avoidable delays even if this has to do with congestion because, after all, perhaps there’s
something they can do with flight scheduling or flight speed, or even gate selection. And while they
understand that international flights occasionally impact domestic flights, they hope to tackle the
sizeable local market first.

Executives have provided you with a dataset from the United States Department of Transportation
Bureau of Transportation Statistics with all 2018 AA domestic flights.

The approach

Upon careful consideration, you have decided to approach this both as a regression problem and a
classification problem. Therefore, you will produce models that predict minutes delayed as well as
models that classify whether flights were delayed by more than 15 minutes. For interpretation, using
both will enable you to use a wider variety of methods and expand your interpretation accordingly.
So we will approach this example by taking the following steps:
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1. Predicting minutes delayed with various regression methods

2. Classifying flights as delayed or not delayed with various classification methods

These steps in the Reviewing traditional model interpretation methods section are followed by conclusions
spread out in the rest of the sections of this chapter.

The preparations

You will find the code for this example here: https://github.com/PacktPublishing/Interpretable-
Machine-Learning-with-Python-2E/blob/main/@3/FlightDelays.ipynb.

Loading the libraries

To run this example, you need to install the following libraries:

. mldatasets to load the dataset

. pandas and numpy to manipulate it

. sklearn (scikit-learn), rulefit, statsmodels, interpret, tf, and gaminet to fit models and
calculate performance metrics

. matplotlib to create visualizations
Load these libraries as seen in the following snippet:

import math

import mldatasets

import pandas as pd

import numpy as np

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import PolynomialFeatures, StandardScaler,\

MinMaxScaler

from sklearn.model_selection import train_test_split

from sklearn import metrics, linear_model, tree, naive_bayes,\
neighbors, ensemble, neural_network, svm

from rulefit import RuleFit

import statsmodels.api as sm

from interpret.glassbox import ExplainableBoostingClassifier

from interpret import show

from interpret.perf import ROC

import tensorflow as tf

from gaminet import GAMINet

from gaminet.utils import plot_trajectory, plot_regularization,\
local_visualize, global_visualize_density,\
feature_importance_visualize

import matplotlib.pyplot as plt


https://github.com/PacktPublishing/Interpretable-Machine-Learning-with-Python-2E/blob/main/03/FlightDelays.ipynb
https://github.com/PacktPublishing/Interpretable-Machine-Learning-with-Python-2E/blob/main/03/FlightDelays.ipynb
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Understanding and preparing the data

We then load the data as shown:

aadl18_df = mldatasets.load("aa-domestic-delays-2018")

There should be nearly 900,000 records and 23 columns. We can take a peek at what was loaded like this:

print(aad18_df.info())

The following is the output:

RangeIndex: 899527 entries, © to 899526
Data columns (total 23 columns):

FL_NUM 899527 non-null int64
ORIGIN 899527 non-null object
DEST 899527 non-null object
PLANNED_DEP_DATETIME 899527 non-null object
CRS_DEP_TIME 899527 non-null int64
DEP_TIME 899527 non-null float64
DEP_DELAY 899527 non-null float64
DEP_AFPH 899527 non-null float64
DEP_RFPH 899527 non-null float64
TAXI_OUT 899527 non-null float64
WHEELS_OFF 899527 non-null float64

WEATHER_DELAY 899527 non-null float64
NAS_DELAY 899527 non-null float64
SECURITY_DELAY 899527 non-null float64
LATE_AIRCRAFT_DELAY 899527 non-null float64
dtypes: float64(17), int64(3), object(3)

Everything seems to be in order because all columns are there and there are no null values.

The data dictionary

Let’s examine the data dictionary.
General features are as follows:

*  FL_NUM: Flight number.
*  ORIGIN: Starting airport code (IATA).
. DEST: Destination airport code (IATA).

Departure features are as follows:

. PLANNED_DEP_DATETIME: The planned date and time of the flight.
. CRS_DEP_TIME: The planned departure time.
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DEP_TIME: The actual departure time.

DEP_AFPH: The number of actual flights per hour occurring during the interval in between the
planned and actual departure from the origin airport (factoring in 30 minutes of padding). The
feature tells you how busy the origin airport was during takeoft.

DEP_RFPH: The departure relative flights per hour is the ratio of actual flights per hour over
the median number of flights per hour that occur at the origin airport at that time of day, day
of the week, and month of the year. The feature tells you how relatively busy the origin airport
was during takeoff.

TAXI_OUT: The time duration elapsed between the departure from the origin airport gate and
wheels off.

WHEELS_OFF: The point in time that the aircraft’s wheels leave the ground.

In-flight features are as follows:

CRS_ELAPSED_TIME: The planned amount of time needed for the flight trip.

PCT_ELAPSED_TIME: The ratio of actual flight time over planned flight time to gauge the plane’s
relative speed.

DISTANCE: The distance between two airports.

Arrival features are as follows:

CRS_ARR_TIME: The planned arrival time.

ARR_AFPH: The number of actual flights per hour occurring during the interval between the
planned and actual arrival time at the destination airport (factoring in 30 minutes of padding).
The feature tells you how busy the destination airport was during landing.

ARR_RFPH: The arrival relative flights per hour is the ratio of actual flights per hour over the
median number of flights per hour that occur at the destination airport at that time of day, day
of the week, and month of the year. The feature tells you how relatively busy the destination
airport was during landing.

Delay features are as follows:

DEP_DELAY: The total delay on departure in minutes.

ARR_DELAY: The total delay on arrival in minutes can be subdivided into any or all of the fol-
lowing:

a. CARRIER_DELAY: The delay in minutes caused by circumstances within the airline’s
control (for example, maintenance or crew problems, aircraft cleaning, baggage load-
ing, fueling, and so on).

b. WEATHER_DELAY: The delay in minutes caused by significant meteorological conditions
(actual or forecasted).

c. NAS_DELAY: The delay in minutes mandated by a national aviation system such as

non-extreme weather conditions, airport operations, heavy traffic volume, and air
traffic control.
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d. SECURITY_DELAY: The delay in minutes caused by the evacuation of a terminal or con-
course, re-boarding of an aircraft because of a security breach, faulty screening equip-
ment, or long lines above 29 minutes in screening areas.

e. LATE_AIRCRAFT_DELAY: The delay in minutes caused by a previous flight with the same
aircraft that arrived late.

Data preparation
For starters, PLANNED_DEP_DATETIME must be a datetime data type:

aad18 df[ 'PLANNED_DEP_DATETIME'] =\
pd.to_datetime(aad18_df[ 'PLANNED_DEP_DATETIME'])

The exact day and time of a flight don’t matter, but maybe the month and day of the week do because
of weathe